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Why?

• 6Li known to have 3He + 3H and 4He + d clustering 
properties 
• (6Li,t) reaction could be powerful tool to study nuclear physics 

• 3He clustering states of some nuclei 
• three particle transfer reaction mechanism not studied well 

• 22Ne(6Li,t)25Mg in inverse kinematics never been studied 
before
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Set-Up

• Transfer and Inelastic scattering 
All-angle Reaction Array (TIARA) 
• Si (segmented) and Ge detectors 

• Multipole-Dipole-Multipole (MDM) 
• Oxford detector 

• isobutane (35 Torr) 
• wire chamber (micromegas)
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22Ne (7A MeV) beam

25Mg

6LiF 
target

t
30 ug/cm2 (C backing 10 ug/cm2)

TIARA
MDM

Oxford

• Transfer and Inelastic scattering All-angle 
Reaction Array (TIARA)

Pictures 1 and 3: E. Bennett 
Picture 2: A. Spiridon et al., Nuclear Instruments and Methods B376 (2016)

gamma
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How?

• look at coincidences using MDM 
spectrometer, Si, and Ge 
detectors 
• measurements of t energy and 

scattering angles to get 25Mg 
excitation energy 

• various gates on variables such 
as Delta E - E and x-position 
• extract Mg 
• extract 25Mg  
• extract (6Li,t) direct reaction 
• obtained 25Mg excitation spectrum 

from 22Ne(6Li,t)25Mg 
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TIARA

Left: Segmented backward annular 
detector (HYBALL). Right: Barrel.

Picture 1: S. Ota 
Pictures 2 and 3: M. Labiche et al., Nuclear Instruments and Method A614 (2010)



Esha Rao August 15, 2018

Step 1

5

Delta E vs. Eres in Micromega 1 of some runs. This is used 
to gate on Mg.

Eres (sum) in MM1 (MeV)
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Step 1

6

Delta E vs. Eres in Micromega 1 of some runs. This is used 
to gate on Mg.

Eres (sum) in MM1 (MeV)
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Step 2
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Position on Wire 2 (cm)
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Delta E vs. Position on Wire 2

Delta E vs. Position on Wire 2 of some runs. This is 
used to gate on 25Mg.

Delta E vs. Position on Wire 2
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Step 2
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Position on Wire 2 (cm)
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Delta E vs. Position on Wire 2

Delta E vs. Position on Wire 2 of some runs. This is 
used to gate on 25Mg.
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Step 3
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Position on Wire 2 (cm)
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25Mg Excitation Energy vs. Position on Wire 2

25Mg Excitation Energy vs. Position on Wire 2 of some runs. 
This is used to gate on (6Li,t). 

25Mg Excitation Energy vs. Position on Wire 2
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Step 3
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Position on Wire 2 (cm)
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25Mg Excitation Energy vs. Position on Wire 2

25Mg Excitation Energy vs. Position on Wire 2 of some runs. 
This is used to gate on (6Li,t). 

(6Li, t)

25Mg Excitation Energy vs. Position on Wire 2
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Analysis

11

25Mg Excitation Energy of all runs. This shows the 
populated states of 25Mg.

Excitation Energy (MeV)
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Analysis

12

25Mg Excitation Energy of all runs. This shows the 
populated states of 25Mg.

Excitation Energy (MeV)
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How do we 
know which 
states the 
peaks are?

2.738 (7/2+)
2.801 (3/2+)

3.405 (9/2+)
3.413 (3/2-)

3.908 (5/2+)
3.970 (7/2-)
4.059 (9/2+)

2.563 (1/2+)

1.965 (5/2+)

0.975 (3/2+)
0.585 (1/2+)

0 (5/2+)
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Angular Distribution

13

Angular distribution of 3400 keV excited state in 25Mg with 
theoretical plots J=9/2+ and J=3/2- created by FRESCO.

Spin Assignment of Ex~3400 keV state from Angular Distribution
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Angular Distribution
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Angular distribution of 3400 keV excited state in 25Mg with 
theoretical plots J=9/2+ and J=3/2- created by FRESCO.

drop correlates most 
with J=3/2- which is 

3.413 MeV state

Spin Assignment of Ex~3400 keV state from Angular Distribution
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Angular distribution of 3400 keV excited state in 25Mg with 
theoretical plots J=9/2+ and J=3/2- created by FRESCO.

Angular Distribution

15

Spectroscopic Factor 
= 0.22 +- 0.04

drop correlates most 
with J=3/2- which is 

3.413 MeV state

Spin Assignment of Ex~3400 keV state from Angular Distribution
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Results
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25Mg Excitation Energy of all runs. This shows the 
populated states of 25Mg.
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negative 
parities are 

strongly 
populated

2.738 (7/2+)
2.801 (3/2+)

3.405 (9/2+)
3.413 (3/2-)

3.908 (5/2+)
3.970 (7/2-)
4.059 (9/2+)

2.563 (1/2+)

1.965 (5/2+)

0.975 (3/2+)
0.585 (1/2+)

0 (5/2+)

4.277 (1/2-)

7.286 (7/2-)



Esha Rao August 15, 2018

Conclusion

• finalize determining 
spectroscopic factors 
• other high energy 

states 
• error analysis 

• compare to shell model 
theory calculations

17

• observed strong 
selectivity of (6Li,t) 
three particle transfer 
reaction in 
22Ne(6Li,t)25Mg 
experiments  
• negative parity states 

are strongly populated 
• spectroscopic factor is 

observed for 3.4 MeV 
state (= 0.22 +- 0.04)

What’s Next?
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Normalization
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ThetaLab (deg)
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Oxford Detector

21



Esha Rao August 15, 2018

Multipole-Dipole-Multipole Spectrometer (MDM)
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